4,799 research outputs found

    Geoneutrinos in Borexino

    Full text link
    This paper describes the Borexino detector and the high-radiopurity studies and tests that are integral part of the Borexino technology and development. The application of Borexino to the detection and studies of geoneutrinos is discussed.Comment: Conference: Neutrino Geophysics Honolulu, Hawaii December 14-16, 200

    On Approximating Restricted Cycle Covers

    Get PDF
    A cycle cover of a graph is a set of cycles such that every vertex is part of exactly one cycle. An L-cycle cover is a cycle cover in which the length of every cycle is in the set L. The weight of a cycle cover of an edge-weighted graph is the sum of the weights of its edges. We come close to settling the complexity and approximability of computing L-cycle covers. On the one hand, we show that for almost all L, computing L-cycle covers of maximum weight in directed and undirected graphs is APX-hard and NP-hard. Most of our hardness results hold even if the edge weights are restricted to zero and one. On the other hand, we show that the problem of computing L-cycle covers of maximum weight can be approximated within a factor of 2 for undirected graphs and within a factor of 8/3 in the case of directed graphs. This holds for arbitrary sets L.Comment: To appear in SIAM Journal on Computing. Minor change

    Producing geothermal energy with a deep borehole heat exchanger. Exergy optimization of different applications and preliminary design criteria

    Get PDF
    This paper aims at proposing fast and plain design tools to evaluate the best energy application for deep borehole heat exchangers, exploiting geothermal resources. Exergy efficiency has been chosen as a performance index. Five possible utilization solutions have been analyzed: district heating, adsorption cooling, ORC power production, a thermal cascade system, and combined heat and power configuration. An extensive sensitivity analysis on source characteristics and well geometry has been performed to find the design criteria that ensure the maximum exergy performance. Results show that configurations involving district heating are recommended for exclusive power production. If optimized, district heating exergy efficiency can reach values in the range 40%–50% when a geothermal source at the well bottom is lower than 300 °C. For higher values, the combined heat and power production is a preferable choice, reaching an exergy efficiency of up to 60%. Design charts are also provided to read first-attempt values of the well operative temperatures and flow rate to maximize exergy efficiency for each utilization layouts

    Grid-Obstacle Representations with Connections to Staircase Guarding

    Full text link
    In this paper, we study grid-obstacle representations of graphs where we assign grid-points to vertices and define obstacles such that an edge exists if and only if an xyxy-monotone grid path connects the two endpoints without hitting an obstacle or another vertex. It was previously argued that all planar graphs have a grid-obstacle representation in 2D, and all graphs have a grid-obstacle representation in 3D. In this paper, we show that such constructions are possible with significantly smaller grid-size than previously achieved. Then we study the variant where vertices are not blocking, and show that then grid-obstacle representations exist for bipartite graphs. The latter has applications in so-called staircase guarding of orthogonal polygons; using our grid-obstacle representations, we show that staircase guarding is \textsc{NP}-hard in 2D.Comment: To appear in the proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Fast algorithms for min independent dominating set

    Full text link
    We first devise a branching algorithm that computes a minimum independent dominating set on any graph with running time O*(2^0.424n) and polynomial space. This improves the O*(2^0.441n) result by (S. Gaspers and M. Liedloff, A branch-and-reduce algorithm for finding a minimum independent dominating set in graphs, Proc. WG'06). We then show that, for every r>3, it is possible to compute an r-((r-1)/r)log_2(r)-approximate solution for min independent dominating set within time O*(2^(nlog_2(r)/r))

    Algorithmic aspects of disjunctive domination in graphs

    Full text link
    For a graph G=(V,E)G=(V,E), a set DVD\subseteq V is called a \emph{disjunctive dominating set} of GG if for every vertex vVDv\in V\setminus D, vv is either adjacent to a vertex of DD or has at least two vertices in DD at distance 22 from it. The cardinality of a minimum disjunctive dominating set of GG is called the \emph{disjunctive domination number} of graph GG, and is denoted by γ2d(G)\gamma_{2}^{d}(G). The \textsc{Minimum Disjunctive Domination Problem} (MDDP) is to find a disjunctive dominating set of cardinality γ2d(G)\gamma_{2}^{d}(G). Given a positive integer kk and a graph GG, the \textsc{Disjunctive Domination Decision Problem} (DDDP) is to decide whether GG has a disjunctive dominating set of cardinality at most kk. In this article, we first propose a linear time algorithm for MDDP in proper interval graphs. Next we tighten the NP-completeness of DDDP by showing that it remains NP-complete even in chordal graphs. We also propose a (ln(Δ2+Δ+2)+1)(\ln(\Delta^{2}+\Delta+2)+1)-approximation algorithm for MDDP in general graphs and prove that MDDP can not be approximated within (1ϵ)ln(V)(1-\epsilon) \ln(|V|) for any ϵ>0\epsilon>0 unless NP \subseteq DTIME(VO(loglogV))(|V|^{O(\log \log |V|)}). Finally, we show that MDDP is APX-complete for bipartite graphs with maximum degree 33

    Placing regenerators in optical networks to satisfy multiple sets of requests.

    Get PDF
    The placement of regenerators in optical networks has become an active area of research during the last years. Given a set of lightpaths in a network G and a positive integer d, regenerators must be placed in such a way that in any lightpath there are no more than d hops without meeting a regenerator. While most of the research has focused on heuristics and simulations, the first theoretical study of the problem has been recently provided in [10], where the considered cost function is the number of locations in the network hosting regenerators. Nevertheless, in many situations a more accurate estimation of the real cost of the network is given by the total number of regenerators placed at the nodes, and this is the cost function we consider. Furthermore, in our model we assume that we are given a finite set of p possible traffic patterns (each given by a set of lightpaths), and our objective is to place the minimum number of regenerators at the nodes so that each of the traffic patterns is satisfied. While this problem can be easily solved when d = 1 or p = 1, we prove that for any fixed d,p ≥ 2 it does not admit a PTASUnknown control sequence '\textsc', even if G has maximum degree at most 3 and the lightpaths have length O(d)(d). We complement this hardness result with a constant-factor approximation algorithm with ratio ln (d ·p). We then study the case where G is a path, proving that the problem is NP-hard for any d,p ≥ 2, even if there are two edges of the path such that any lightpath uses at least one of them. Interestingly, we show that the problem is polynomial-time solvable in paths when all the lightpaths share the first edge of the path, as well as when the number of lightpaths sharing an edge is bounded. Finally, we generalize our model in two natural directions, which allows us to capture the model of [10] as a particular case, and we settle some questions that were left open in [10]

    Constant-degree graph expansions that preserve the treewidth

    Full text link
    Many hard algorithmic problems dealing with graphs, circuits, formulas and constraints admit polynomial-time upper bounds if the underlying graph has small treewidth. The same problems often encourage reducing the maximal degree of vertices to simplify theoretical arguments or address practical concerns. Such degree reduction can be performed through a sequence of splittings of vertices, resulting in an _expansion_ of the original graph. We observe that the treewidth of a graph may increase dramatically if the splittings are not performed carefully. In this context we address the following natural question: is it possible to reduce the maximum degree to a constant without substantially increasing the treewidth? Our work answers the above question affirmatively. We prove that any simple undirected graph G=(V, E) admits an expansion G'=(V', E') with the maximum degree <= 3 and treewidth(G') <= treewidth(G)+1. Furthermore, such an expansion will have no more than 2|E|+|V| vertices and 3|E| edges; it can be computed efficiently from a tree-decomposition of G. We also construct a family of examples for which the increase by 1 in treewidth cannot be avoided.Comment: 12 pages, 6 figures, the main result used by quant-ph/051107
    corecore